Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph

نویسندگان

  • Dirk Meierling
  • Seyed Mahmoud Sheikholeslami
  • Lutz Volkmann
چکیده

For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (G) with f(v) = ∅ the condition ⋃ u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set {f1, f2, . . . , fd} of k-rainbow dominating functions on G with the property that ∑ d i=1 |fi(v)| ≤ k for each v ∈ V (G), is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a krainbow dominating family on G is the k-rainbow domatic number of G, denoted by drk(G). Note that dr1(G) is the classical domatic number d(G). In this paper we initiate the study of the k-rainbow domatic number in graphs and we present some bounds for drk(G). Many of the known bounds of d(G) are immediate consequences of our results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nordhaus-Gaddum type results for the Harary index of graphs

The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...

متن کامل

ON THE TOTAL {k}-DOMINATION AND TOTAL {k}-DOMATIC NUMBER OF GRAPHS

For a positive integer k, a total {k}-dominating function of a graph G without isolated vertices is a function f from the vertex set V (G) to the set {0, 1, 2, . . . , k} such that for any vertex v ∈ V (G), the condition ∑ u∈N(v) f(u) ≥ k is fulfilled, where N(v) is the open neighborhood of v. The weight of a total {k}-dominating function f is the value ω(f) = ∑ v∈V f(v). The total {k}-dominati...

متن کامل

k-TUPLE DOMATIC IN GRAPHS

For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...

متن کامل

Nordhaus-gaddum-type Relations for the Energy and Laplacian Energy of Graphs

A b s t r a c t. Let G denote the complement of the graph G . If I(G) is some invariant of G , then relations (identities, bounds, and similar) pertaining to I(G) + I(G) are said to be of Nordhaus-Gaddum type. A number of lower and upper bounds of Nordhaus-Gaddum type are obtained for the energy and Laplacian energy of graphs. Also some new relations for the Laplacian graph energy are established.

متن کامل

Chromatic Transversal Domatic Number of Graphs

The chromatic number χ(G) of a graph G is the minimum number of colours required to colour the vertices of G in such a way that no two adjacent vertices of G receive the same colour. A partition of V into χ(G) independent sets (called colour classes) is said to be a χpartition of G. A set S ⊆ V is called a dominating set of G if every vertex in V − S is adjacent to a vertex in S. A dominating s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2011